A National Multimodal Mobility Model for supporting decision-making in passenger transportation sector

F

Mario Tartaglia

Leader of FS Research Centre

21 February 2024

Introduction

- To overcome the limitations of stationary mobility models currently in use at the national scale, Ferrovie dello Stato Italiane has recently developed a multimodal short and long-distance passenger model aimed at assessing the economic, social, and environmental impacts of mobility in Italy.
- This presentation briefly illustrates the methodological structure of the model build with the support of ISFORT.

History of Italian institutional national models Principal weak points: No ready-to-use data Need for big efforts for setting up scenarios Unclear demand partitioning by distance class National Short Haul Model Ferrovie dello Stato, the Italian state-owned railway company National Long Haul Model C... in use . SASM SAVEF update with SIMPT SIMPT 2 ISFORT The Italian Ministry of Infrastructure and Transport 2018 1993 2003 2009 2023 RROVIE 21 February 2024

Il Centro Studi di Ferrovie dello Stato Ita

PREMIUM PARTNER

3

Structure of national passenger demand model

ALIANE

Il Centro Studi di Ferrovie dello Stato Italiane

4

Mario Tartaglia | A Multimodal Model for simulating Passengers Mobility in Italy

Socio-economic and territorial data

Il Centro Studi di Ferrovie dello Stato Italiane

The zoning system

earch Centre

OOC Mario Tartaglia | A Multimodal Model for simulating Passengers Mobility in Italy

Short haul model centroid

Short haul zoning system

Long haul zoning system

21 February 2024

PREMIUM PARTNER

Transport supply system data

ß

Modelling steps

- The model is sequential and iterative. The output results of each step are used for verification and validation activities, allowing to improve the formulation of the entire model with the aim of strengthening the methodological soundness of the whole process.
- The functional structure of the national passenger demand model is at partial rates, disaggregated by homogeneous users and by purpose travel with a trip-based approach. The model estimates passenger demand for an average weekday through the specification of four/five sub-models, of which the general formulation is as follows:

(**A**) Only for short haul model (<80Km), there is an intermediate step between generation and distribution model aimed to estimate the vector of trips generated by individuals moving outside the area of residence.

Data sources according to modelling steps

Long haul model: insights

Long haul module dimensions

5

Generation model

FS Research Centre Il Centro Studi di Ferrovie dello Stato Italiane

Mario Tartaglia | A Multimodal Model for simulating Passengers Mobility in Italy

PREMILIM PARTNER

Modules for updating exogenous input variables

ΤΠΤΠ	

1.Demographic variable forecast

Estimates the variations of the municipal population by age groups based on ISTAT regional demographic forecasts

2.Active/not active people forecast

1°01° 019000

Official estimates of percentage changes in **GDP Employment forecast (ANPAL)** per occupational type-

sector (ATECO), projection at municipality level.

Variation of students based on demographic projections and Agnelli Foundation university enrolment rates

3.Smart workers

1010 010100 0101 011 11 10 10

Forecast of **Smart Working** percentage per occupational type-sector ATECO using: Observed phenomenon (MIT, Isfort,...) Official forecasts of smart workers by Bank of Italy,

POLIMI

GENERA TION MODEL

 21 February 2024

 Mario Tartaglia | A Multimodal Model for simulating Passengers Mobility in Italy
 13

Il Centro Studi di Ferrovie dello

Distribution model

- Number of trips from generation model
- Actrativeness features for zones A_d; separation cost between zones C_{od}
- Hierarchical classification of zonal attraction capacities by trip reason (S,A,B,C,D)
- Matrix of time and territorial distances among zones

OUTPUT

INPUT

 β_1 and β_2 are defined for each reason and attraction class

• National origin-destination matrix splitted by purpose s

Mario Tartaglia | A Multimodal Model for simulating Passengers Mobility in Italy

PREMILIM PARTNER

Actractiveness features of distribution model

0.00100	STUDY	 number of students enrolled in university 	
0.0000000000000000000000000000000000000	WORK	 number of employees divided in ATECO categories 	Actrativeness features for zones A _d
010000000000000000000000000000000000000	PERSONAL SERVICES	 number of employees related to activities providing services to households and individuals such as manufacturing activities; wholesale and retail trade, repair of motor vehicles and motorcycles; professional, scientific and technical activities; health and social care; other service activities. 	Classification of zonal attraction capacities (S,A,B,C,D) by trip reason
10010010000	TOURISM	 number of employees related to: accommodation and catering services; rental, travel agencies, business support services; artistic, sports, entertainment, and amusement activities. Beds of the accommodation establishments. 	1,0000
0 0		000000000000000000000000000000000000000	01100002

01001

Mario Tartaglia | A Multimodal Model for simulating Passengers Mobility in Italy

21 February 2024

PREMIUM PARTNER

National long haul passenger modal choice model

200	MODE	ATTRIBUTES
	CAR	 travel time, including access and egress times within the zone; cross-zonal average cost, estimated on the basis of average consumption of private vehicles and motorway tolls.
	HIGHSPEED TRAINS	 On board time (GTFS) + access/exit time HS station + waiting time Tariff cost+ access/exit cost Frequency of HSR services
	intercity & REGIONAL TRAINS	 On board time (GTFS) + access/exit time HS station + waiting time Tariff cost + access/exit cost Frequency of HSR services
	LONG HAUL BUS	 Travel time by scheduled services + access/exit time Average cost by consulting the website of the main operators
011	AIR	 Flight time + access/exit time + time spent in the airport Tariff cost of flight + cost of access/exit to the airport

THE MODEL

Utility of mode *m*

 $p[m/ods] = \frac{\exp(V_{m/ods})}{\sum_{m'} \exp(V_{m'/ods})}$

for each given origin *o*, destination *d*, and purpose *s*

Probability of choosing mode m

001010

21 February 2024 Mario Tartaglia | A Multimodal Model for simulating Passengers Mobility in Italy

National Long-Haul flows

National long haul passengers model validation

The national Long-Haul Model showed a high ability to reproduce the mobility phenomena in the current scenario without the need to use origin-destination matrices correction procedures.

Short haul model: insight

Long haul module dimensions

0100101

T

National Short Haul Model: distribution model

Model validation by comparison with Mobile Network Data (MND)

Comparison of total OD trips generated with Vodafone overall mobile phone data, trip distance less than 80 km, without come back trips.

Blending Long and Short Haul Models

Centre

The model's user interface

21 February 2024

Comparison of Long-Haul and Short-Haul modules

Feature	Long-Haul	Short-Haul
Distances	Trip distances >80 km	Trip distances <80 km
Zoning system	2815 zones	911 zones
Purposes	4 travel purposes(no more tourism/leisure and personal services)	Only 3 travel purposes (work, study, not systematic) instead of
Generation model		Additional multiplier: $p_m[o_k]^{i_{active/not_active}}$: incidence of the mobile population, population that leaves the house daily, by class of i active resident in a municipality or sub-municipality of accessibility k;
Distribution model		Additional phase Macro-distribution to extract extra-zonal trips. Distribution calibration based on ISTAT OD matrix for study and work purposes, by Mobile Network Data for non-systematic matrix and purposes.
Modal choice model	5 modes: private car, long-haul bus, IC&Regional rail, Highspeed rail	Only 3 modes: private car, local bus, IC&R services
Assignment	Principal road graph	Detailed road network graph
0000		

Il Centro Studi di Ferrovie dello Stato Italiane

Overall passengers national demand modelling

Flow maps in pre-Covid scenario (2019)

0100101

21 February 2024 Mario Tartaglia | A Multimodal Model for simulating Passengers Mobility in Italy

National demand scenario analysis

MODEL

The National Demand Model is a powerful, flexible and unique tool in the national panorama for the analysis of current and potential passenger demand.

The model is:

- fitted at the <u>national scale</u>;
- made up of <u>short and long haul</u> submodels;
- easy data and scenario <u>updating;</u>
- designed to be <u>fed with ready-to-</u> <u>use official data sources.</u>

SCENARIOS

SOCIO ECONOMIC VARIABLES

OCCUPATION E

SMART WORKING

 \mathbb{Q}

TRANSPORT SERVICES

TRANSPORT INFRASTRUCTURES

OUTPUT

- Modal share among modes inserted in the model and modal matrix.
- Travel time/distance by OD, by rail and road.
 - **OD flows**, **passengers/vehicle** on rail/road network simulated by the model.
 - **Passengers boarding and alighting** at stations divided by demand category (short/long distance).
- Estimate of passenger-km divided by type of service at national level.
- Graphic output in shapefile format customizable according to needs.

26

FS Research Centre Il Centro Studi di Ferrovie dello Stato Italiane

